Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The low-energy electronic structure of nanographenes can be tuned through zero-energy pi-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and ...
Structure determination of materials is key to understanding their physical properties. While single-crystal X-ray diffraction is the gold standard for structures displaying long-range order, many materials of interest are polycrystalline and/or disordered ...
One key bottleneck of solid-state NMR spectroscopy is that H-1 NMR spectra of organic solids are often very broad due to the presence of a strong network of dipolar couplings. We have recently suggested a new approach to tackle this problem. More specifica ...
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transpo ...
Nuclear magnetic resonance (NMR) methods are powerful tools employed in many fields, including physics, chemistry, material science, biology, and medicine. The use of NMR methodologies in an even wider range of applications is often hindered by the relativ ...
Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kita ...
In solid-state NMR, homonuclear dipolar couplings contribute greatly to the broadening of 1H spectral line shapes. Even at the fastest magic-angle spinning rates (MAS) available today [100-150kHz], the linewidths still extend over several hundred Hertz, li ...
We introduce turboMagnon, an implementation of the Liouville-Lanczos approach to linearized time-dependent density-functional theory, designed to simulate spin-wave spectra in solid-state materials. The code is based on the noncollinear spin-polarized fram ...
To miniaturize the double-resonance (DR) rubidium (Rb) vapor-cell atomic clocks, a new type of micro-loop-gap microwave resonator (mu-LGR) is proposed for TE011-like mode where the magnetic field inside the cavity is homogeneous and oriented along its long ...
In this Letter we address the reentrance of magic-angle phenomena (band flatness and quantum-geometric transport) in twisted bilayer graphene (TBG) subjected to strong magnetic fluxes +/-(1)0, +/- 200, +/- 3(p0 ... ((D0 = h/e is the flux quantum per moire ...