Publication

On the Linearity of Bayesian Interpolators for Non-Gaussian Continuous-Time AR(1) Processes

Abstract

Bayesian estimation problems involving Gaussian distributions often result in linear estimation techniques. Nevertheless, there are no general statements as to whether the linearity of the Bayesian estimator is restricted to the Gaussian case. The two common strategies for non-Gaussian models are either finding the best linear estimator or numerically evaluating the Bayesian estimator by Monte Carlo methods. In this paper, we focus on Bayesian interpolation of non-Gaussian first-order autoregressive (AR) processes where the driving innovation can admit any symmetric infinitely divisible distribution characterized by the Levy-Khintchine representation theorem. We redefine the Bayesian estimation problem in the Fourier domain with the help of characteristic forms. By providing analytic expressions, we show that the optimal interpolator is linear for all symmetric alpha-stable distributions. The Bayesian interpolator can be expressed in a convolutive form where the kernel is described in terms of exponential splines. We also show that the limiting case of Levy-type AR(1) processes, the system of which has a pole at the origin, always corresponds to a linear Bayesian interpolator made of a piecewise linear spline, irrespective of the innovation distribution. Finally, we show the two mentioned cases to be the only ones within the family for which the Bayesian interpolator is linear.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.