Publication

In situ copper–alumina composites

Carmen Krüger, Andreas Mortensen
Elsevier, 2013
Journal paper
Abstract

We present a process for the production of Cu-Al matrix composites containing between 25 and 30 vol.% in situ Al2O3. The composites are prepared by pressing, heat-treating and hot working blended powders of Cu, Al and CuO packed into copper alloy cans. The evolution of the microstructure during in situ reaction is governed by the stable growth of alumina films; these mitigate the rate of reaction, preventing thermal runaway if samples are processed with sufficient thermal ballast. The resulting alumina is amenable to subsequent refinement and dispersion by hot working the composite, with reversed (extrusion/upsetting/extrusion) deformation giving best results. Cu7 wt.%Al containing homogeneously distributed micron-sized alumina particles thus produced has a tensile strength of 848 +/- 44 MPa and a tensile ductility of 2.2 +/- 0.8%. (C) 2013 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts

Loading

Related publications

Loading