Publication

Possible spin-orbit driven spin-liquid ground state in the double perovskite phase of Ba3YIr2O9

Abstract

We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic double perovskite form (stable in ambient conditions) under an applied pressure of 8 GPa at 1273 K. While the ambient pressure synthesized sample undergoes long-range magnetic ordering at similar to 4 K, the high-pressure (HP) synthesized sample does not order down to 2 K as evidenced from our susceptibility, heat capacity, and nuclear magnetic resonance (NMR) measurements. Further, for the HP sample, our heat capacity data have the form gamma T + beta T-3 in the temperature (T) range of 2-10 K with the Sommerfeld coefficient gamma = 10 mJ/mol-Ir K-2. The Y-89 NMR shift has no T dependence in the range of 4-120 K and its spin-lattice relaxation rate varies linearly with T in the range of 8-45 K (above which it is T independent). Resistance measurements of both the samples confirm that they are semiconducting. Our data provide evidence for the formation of a 5d-based, gapless, quantum spin-liquid in the cubic (HP) phase of Ba3YIr2O9. In this picture, the gamma T term in the heat capacity and the linear variation of Y-89 1/T-1 arises from excitations out of a spinon Fermi surface. Our findings lend credence to the theoretical suggestion [Chen, Pereira, and Balents, Phys. Rev. B 82, 174440 (2010)] that strong spin-orbit coupling can enhance quantum fluctuations and lead to a QSL state in the double perovskite lattice.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Perovskite (structure)
A perovskite is any material with a crystal structure following the formula ABX3, which was first discovered as the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3). The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856). 'A' and 'B' are two positively charged ions (i.e. cations), often of very different sizes, and X is a negatively charged ion (an anion, frequently oxide) that bonds to both cations.
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Quantum spin liquid
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order. The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact antiferromagnetically with their nearest neighbors, i.
Show more
Related publications (40)

First-Principles Thermodynamics of CsSnI3

Nicola Marzari, Lorenzo Monacelli

CsSnI3 is a promising ecofriendly solution for energy harvesting technologies. It exists at room temperature in either a black perovskite polymorph or a yellow 1D double-chain, which irreversibly deteriorates in the air. In this work, we unveil the relativ ...
AMER CHEMICAL SOC2023

Brokering between tenants for an international materials acceleration platform

Giovanni Pizzi, Ivano Eligio Castelli, Francisco Fernando Ramirez

The efficient utilization of resources in accelerated materials science necessitates flexible, reconfigurable software-defined research workflows. We demonstrate a brokering approach to modular and asynchronous research orchestration to integrate multiple ...
CELL PRESS2023

Magnon-phonon interactions enhance the gap at the Dirac point in the spin-wave spectra of CrI3 two-dimensional magnets

Iurii Timrov

Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kita ...
AMER PHYSICAL SOC2023
Show more
Related MOOCs (8)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.