Publication

Competition between three-sublattice order and superfluidity in the quantum three-state Potts model of ultracold bosons and fermions on a square optical lattice

Frédéric Mila
2013
Journal paper
Abstract

We study a quantum version of the three-state Potts model that includes as special cases the effective models of bosons and fermions on the square lattice in the Mott-insulating limit. It can be viewed as a model of quantum permutations with amplitudes J(parallel to) and J(perpendicular to) for identical and different colors, respectively. For J(parallel to) = J(perpendicular to) > 0 it is equivalent to the SU(3) Heisenberg model, which describes the Mott-insulating phase of 3-color fermions, while the parameter range J(perpendicular to) < min(0, - J(parallel to)) can be realized in the Mott insulating phase of 3-color bosonic atoms. Using linear flavor wave theory, infinite projected entangled-pair states (iPEPS), and continuous-time quantum Monte Carlo simulations, we construct the full T = 0 phase diagram, and we explore the T not equal 0 properties for J(perpendicular to) < 0. For dominant antiferromagnetic J(parallel to) interactions, a three-sublattice long-range ordered stripe state is selected out of the ground-statemanifold of the antiferromagnetic Potts model by quantum fluctuations. Upon increasing vertical bar J(perpendicular to)vertical bar, this state is replaced by a uniform superfluid for J(perpendicular to) < 0, and by an exotic three-sublattice superfluid followed by a two-sublattice superfluid for J(perpendicular to) > 0. The transition out of the uniform superfluid (that can be realized with bosons) is shown to be a peculiar type of Kosterlitz-Thouless transition with three types of elementary vortices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.