TranslationTranslation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between translating (a written text) and interpreting (oral or signed communication between users of different languages); under this distinction, translation can begin only after the appearance of writing within a language community.
Machine translationMachine translation is use of either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches to translation of text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. History of machine translation The origins of machine translation can be traced back to the work of Al-Kindi, a ninth-century Arabic cryptographer who developed techniques for systemic language translation, including cryptanalysis, frequency analysis, and probability and statistics, which are used in modern machine translation.
Computer-assisted translationComputer-aided translation (CAT), also referred to as computer-assisted translation or computer-aided human translation (CAHT), is the use of software to assist a human translator in the translation process. The translation is created by a human, and certain aspects of the process are facilitated by software; this is in contrast with machine translation (MT), in which the translation is created by a computer, optionally with some human intervention (e.g. pre-editing and post-editing).
Statistical machine translationStatistical machine translation (SMT) was a machine translation approach, that superseded the previous, rule-based approach because it required explicit description of each and every linguistic rule, which was costly, and which often did not generalize to other languages. Since 2003, the statistical approach itself has been gradually superseded by the deep learning-based neural network approach. The first ideas of statistical machine translation were introduced by Warren Weaver in 1949, including the ideas of applying Claude Shannon's information theory.
Literal translationLiteral translation, direct translation, or word-for-word translation is a translation of a text done by translating each word separately without looking at how the words are used together in a phrase or sentence. In translation theory, another term for literal translation is metaphrase (as opposed to paraphrase for an analogous translation). It is to be distinguished from an interpretation (done, for example, by an interpreter). Literal translation leads to mistranslation of idioms, which was once a serious problem for machine translation.
Interpretation (logic)An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation.
Evaluation of machine translationVarious methods for the evaluation for machine translation have been employed. This article focuses on the evaluation of the output of machine translation, rather than on performance or usability evaluation. Round-trip translation A typical way for lay people to assess machine translation quality is to translate from a source language to a target language and back to the source language with the same engine. Though intuitively this may seem like a good method of evaluation, it has been shown that round-trip translation is a "poor predictor of quality".
Neural machine translationNeural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model. They require only a fraction of the memory needed by traditional statistical machine translation (SMT) models. Furthermore, unlike conventional translation systems, all parts of the neural translation model are trained jointly (end-to-end) to maximize the translation performance.
Universal quantificationIn mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
Translation studiesTranslation studies is an academic interdiscipline dealing with the systematic study of the theory, description and application of translation, interpreting, and localization. As an interdiscipline, translation studies borrows much from the various fields of study that support translation. These include comparative literature, computer science, history, linguistics, philology, philosophy, semiotics, and terminology. The term "translation studies" was coined by the Amsterdam-based American scholar James S.