FEATURE AND SCORE LEVEL COMBINATION OF SUBSPACE GAUSSIANS IN LVCSR TASK
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...
Far-field automatic speech recognition (ASR) of conversational speech is often considered to be a very challenging task due to the poor quality of alignments available for training the DNN acoustic models. A common way to alleviate this problem is to use c ...
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
We propose a novel multi-task neural network-based approach for joint sound source localization and speech/non-speech classification in noisy environments. The network takes raw short time Fourier transform as input and outputs the likelihood values for th ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern ...
Acoustic modeling based on deep architectures has recently gained remarkable success, with substantial improvement of speech recognition accuracy in several automatic speech recognition (ASR) tasks. For distant speech recognition, the multi-channel deep ne ...
Acoustic modeling based on deep architectures has recently gained remarkable success, with substantial improvement of speech recognition accuracy in several automatic speech recognition (ASR) tasks. For distant speech recognition, the multi-channel deep ne ...