Publication

A Multiple Hypothesis Gaussian Mixture Filter for Acoustic Source Localization and Tracking

2012
Report or working paper
Abstract

In this work, we address the problem of tracking an acoustic source based on measured time difference of arrivals (TDOAs). The classical solution to this problem consists in using a detector, which estimates the TDOA for each microphone pair, and then applying a tracking algorithm, which integrates the "measured" TDOAs in time. Such a two-stage approach presumes (1) that TDOAs can be estimated reliably; and (2) that the errors in detection behave in a well-defined fashion. The presence of noise and reverberation, however, causes larger errors in the TDOA estimates and, thereby, ultimately lowers the tracking performance. We propose to counteract this effect by propagating the detection uncertainty. That is achieved by sampling from the GCCs and then integrating the resulting TDOAs in the framework of a Gaussian mixture filter. Experimental results show that the proposed filter has a significantly lower angular error than a multiple hypothesis particle filter.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Kalman filter
For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory.
Particle filter
Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system.
Indoor positioning system
An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations. A large variety of techniques and devices are used to provide indoor positioning ranging from reconfigured devices already deployed such as smartphones, WiFi and Bluetooth antennas, digital cameras, and clocks; to purpose built installations with relays and beacons strategically placed throughout a defined space.
Show more
Related publications (36)

VDMNav: Software Architecture for Aerodynamically Constrained Navigation on Small Fixed-Wing Drones

Jan Skaloud, Gabriel François Laupré

Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global N ...
2024

Partial discharge localization using time reversal: Application to gas insulated switchgear

Marcos Rubinstein, Hamidreza Karami

Gas-insulated switchgear (GIS) are some of the most reliable and most expensive equipment that are nowadays used in power systems. Condition monitoring of the power system equipment can help operators detect defects like partial discharges (PDs) early, pre ...
2022

Calibration Aspects of INS Navigation

Philipp Clausen

The use of a Bayesian filter (e.g., Kalman filter) for the fusion of information from satellite positioning and inertial navigation is a common approach in many applications, where the knowledge of position, velocity, and attitude in space are of great int ...
EPFL2019
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.