This study reports the details Escherichia coli inactivation kinetics on TiON and TiON-Ag films sputtered on polyester by direct current reactive magnetron sputtering (DC) and pulsed magnetron sputtering (DCP) in an Ar/N2 /O2 atmosphere. The use of TiON leads to bacterial inactivation avoiding leaching of Ag. The surface of TiON and TiON-Ag was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), electron microscopy (EM), X-ray fluorescence (XRF) and contact angle (CA) measurements. Evidence for the photocatalyst self-cleaning after the bacterial inactivation was shown by XPS, contact angle (CA) and the Zetasizer zeta-potential of the proteins. The photo-induced charge transfer from Ag2 O and TiO2 is discussed considering the relative positions of the electronic bands of the two oxides. An interfacial charge transfer mechanism (IFCT) for the photo-induced electron injection is suggested. The most suitable TiON coating sputtered on polyester was 70 nm thick and inactivated E. coli within 120 min under low intensity visible/actinic light (400–700 nm, 4 mW/cm2 ). TiON-Ag sputtered catalysts shortened E. coli inactivation to ∼55 min, since Ag accelerated bacterial inactivation due to its disinfecting properties. Evidence is presented for the repetitive performance within short times of the TiON and TiON-Ag polyester under low intensity visible light.
Thi Ha My Pham, Youngdon Ko, Liping Zhong
Majed Chergui, Camila Bacellar Cases Da Silveira, Rebecca Ann Ingle, Luca Longetti, Thomas Roland Barillot, Daniel Hollas, Ludmila Maria Diniz Leroy
Majed Chergui, Malte Oppermann, Jérémy Raymond Jean Maurice Rouxel