Deviation (statistics)In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation reports the direction of that difference (the deviation is positive when the observed value exceeds the reference value). The magnitude of the value indicates the size of the difference. Errors and residuals A deviation that is a difference between an observed value and the true value of a quantity of interest (where true value denotes the Expected Value, such as the population mean) is an error.
Vector mesonIn high energy physics, a vector meson is a meson with total spin 1 and odd parity (usually noted as JP = 1−). Vector mesons have been seen in experiments since the 1960s, and are well known for their spectroscopic pattern of masses. The vector mesons contrast with the pseudovector mesons, which also have a total spin 1 but instead have even parity. The vector and pseudovector mesons are also dissimilar in that the spectroscopy of vector mesons tends to show nearly pure states of constituent quark flavors, whereas pseudovector mesons and scalar mesons tend to be expressed as composites of mixed states.
Median absolute deviationIn statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample. For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of the absolute deviations from the data's median : that is, starting with the residuals (deviations) from the data's median, the MAD is the median of their absolute values. Consider the data (1, 1, 2, 2, 4, 6, 9).
StatisticsStatistics (from German: Statistik, () "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal".
Statistical modelA statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables.
Rho mesonIn particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as _Rho+, _Rho0 and _Rho-. Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. After the pions and kaons, the rho mesons are the lightest strongly interacting particle, with a mass of 775.45MeV for all three states. The rho mesons have a very short lifetime and their decay width is about 145MeV with the peculiar feature that the decay widths are not described by a Breit–Wigner form.
Pseudoscalar mesonIn high-energy physics, a pseudoscalar meson is a meson with total spin 0 and odd parity (usually notated as J^P = 0^− ). Pseudoscalar mesons are commonly seen in proton-proton scattering and proton-antiproton annihilation, and include the pion (π), kaon (K), eta (η), and eta prime () particles, whose masses are known with great precision. Among all of the mesons known to exist, in some sense, the pseudoscalars are the most well studied and understood.
D mesonThe D mesons are the lightest particle containing charm quarks. They are often studied to gain knowledge on the weak interaction. The strange D mesons (Ds) were called "F mesons" prior to 1986. The D mesons were discovered in 1976 by the Mark I detector at the Stanford Linear Accelerator Center. Since the D mesons are the lightest mesons containing a single charm quark (or antiquark), they must change the charm (anti)quark into an (anti)quark of another type to decay.
Alpha decayAlpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2e and a mass of 4Da. For example, uranium-238 decays to form thorium-234.
LHCb experimentThe LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region.