TachyonA tachyon (ˈtækiɒn) or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are inconsistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox.
Neutron starA neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of and a mass of about . They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.
Massive particleThe physics technical term massive particle refers to a massful particle which has real non-zero rest mass (such as baryonic matter), the counter-part to the term massless particle. According to special relativity, the velocity of a massive particle is always less than the speed of light. When highlighting relativistic speeds, the synonyms bradyon (from βραδύς, bradys, “slow”), tardyon or ittyon are sometimes used to contrast with luxon (which moves at light speed) and hypothetical tachyon (which moves faster than light).
Industrial radiographyIndustrial radiography is a modality of non-destructive testing that uses ionizing radiation to inspect materials and components with the objective of locating and quantifying defects and degradation in material properties that would lead to the failure of engineering structures. It plays an important role in the science and technology needed to ensure product quality and reliability. In Australia, industrial radiographic non-destructive testing is colloquially referred to as "bombing" a component with a "bomb".
Exotic matterThere are several proposed types of exotic matter: Hypothetical particles and states of matter that have "exotic" physical properties that would violate known laws of physics, such as a particle having a negative mass. Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist. Several particles whose existence has been experimentally confirmed that are conjectured to be exotic hadrons and within the Standard Model.
Particle radiationParticle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam. Due to the wave–particle duality, all moving particles also have wave character. Higher energy particles more easily exhibit particle characteristics, while lower energy particles more easily exhibit wave characteristics.
Geiger counterA Geiger counter (also known as a Geiger–Müller counter or G-M counter) is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry. It detects ionizing radiation such as alpha particles, beta particles, and gamma rays using the ionization effect produced in a Geiger–Müller tube, which gives its name to the instrument.