**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# For Coordination, State Component Transitions

Abstract

Coordinating component behaviour and, in particular, concurrent access to resources is among the key difficulties of building large concurrent systems. To address this, developers must be able to manipulate high-level concepts, such as Finite State Machines and separate functional and coordination aspects of the system behaviour. OSGi associates to each bundle a simple state machine representing the bundle’s lifecycle. However, once the bundle has been started, it remains in the state Active — the functional states are not represented. Therefore, this mechanism is not sufficient for coordination of active components. In this talk, we presented a methodology for functional component coordination in OSGi by using BIP coordination mechanisms. In BIP, systems are constructed by superposing three layers of modelling: Behaviour, Interaction and Priority. This approach allows us to clearly separate the system-wide coordination policies from the component behaviour and the interface that components expose for interaction. By using BIP, we have shown how the allowed global states and state transitions of the modular system can be taken into account in a non-invasive manner and without any impact on the technology stack within an OSGi container. We illustrated our approach on real-life application use-case.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (37)

Finite-state machine

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition.

Finite-state transducer

A finite-state transducer (FST) is a finite-state machine with two memory tapes, following the terminology for Turing machines: an input tape and an output tape. This contrasts with an ordinary finite-state automaton, which has a single tape. An FST is a type of finite-state automaton (FSA) that maps between two sets of symbols. An FST is more general than an FSA. An FSA defines a formal language by defining a set of accepted strings, while an FST defines relations between sets of strings.

Deterministic finite automaton

In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run.

Ontological neighbourhood

:

Martin Odersky, Aleksandar Prokopec, Fengyun Liu

Claude Shannon, in his famous thesis (1938), revolutionized circuit design by showing that *Boolean algebra* subsumes all ad-hoc methods that are used in designing switching circuits, or combinational circuits as they are commonly known today. But what is ...

2020Edouard Bugnion, Evangelos Marios Kogias

Cloud platform services must simultaneously be scalable, meet low tail latency service-level objectives, and be resilient to a combination of software, hardware, and network failures. Replication plays a fundamental role in meeting both the scalability and ...

2020The purpose of this article is to present a space of mediation developed by the astrophysicist Vincent Minier and the philosopher Vincent Bontems at the Commissariat à l’Énergie atomique et aux Énergies renouvelables. This room, called “showroom”, promotes ...