Outlier removal for improved source estimation in atmospheric inverse problems
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Proposed 50 years ago for studying stability of oscillators, Allan Variance (AV) was accepted by IEEE as a standard for characterizing behavior of sensors. However, the inverse mapping, i.e. the estimation of noise-parameters from Allan Variance is less st ...
We consider the problem of estimating sparse communication channels in the MIMO context. In small to medium bandwidth communications, as in the current standards for OFDM and CDMA communication systems (with bandwidth up to 20 MHz), such channels are indiv ...
In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for sto ...
Solving a linear inverse problem may include difficulties such as the presence of outliers and a mixing matrix with a large condition number. In such cases a regularized robust estimator is needed. We propose a new tau-type regularized robust estimator tha ...
We propose an pan-tilt-zoom (PTZ) tracking method to keep the target object at the center of the image with a predefined size in image. For this purpose, we develop an efficient method for object size estimation using only the tilt sensory data. First we i ...
We study the problem of distributed adaptive estimation over networks where nodes cooperate to estimate physical parameters that can vary over both space and time domains. We use a set of basis functions to characterize the space-varying nature of the para ...
We consider the estimation of an independent and identically distributed (i.i.d.) (possibly non-Gaussian) vector x is an element of R-n from measurements y is an element of R-m obtained by a general cascade model consisting of a known linear transform foll ...
We develop a least mean-squares (LMS) diffusion strategy for sensor network applications where it is desired to estimate parameters of physical phenomena that vary over space. In particular, we consider a regression model with space-varying parameters that ...
We propose an innovative method for the accurate estimation of surfaces and spatial fields when prior knowledge of the phenomenon under study is available. The prior knowledge included in the model derives from physics, physiology, or mechanics of the prob ...
In this paper we propose a novel partition-based state estimator for linear discrete-time systems composed of physically coupled subsystems affected by bounded disturbances. The proposed scheme is distributed in the sense that each local state estimator ex ...