Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Support vector machineIn machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997) SVMs are one of the most robust prediction methods, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974).
Machine visionMachine vision (MV) is the technology and methods used to provide -based automatic inspection and analysis for such applications as automatic inspection, process control, and robot guidance, usually in industry. Machine vision refers to many technologies, software and hardware products, integrated systems, actions, methods and expertise. Machine vision as a systems engineering discipline can be considered distinct from computer vision, a form of computer science.
Orientation (vector space)The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called .
Linear discriminant analysisLinear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.
Linear formIn mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If V is a vector space over a field k, the set of all linear functionals from V to k is itself a vector space over k with addition and scalar multiplication defined pointwise. This space is called the dual space of V, or sometimes the algebraic dual space, when a topological dual space is also considered.
Axiom of dependent choiceIn mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis. A homogeneous relation on is called a total relation if for every there exists some such that is true. The axiom of dependent choice can be stated as follows: For every nonempty set and every total relation on there exists a sequence in such that for all In fact, x0 may be taken to be any desired element of X.
Kernel methodIn machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets.
Axiom of countable choiceThe axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N. The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC).
Feature selectionFeature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Stylometry and DNA microarray analysis are two cases where feature selection is used. It should be distinguished from feature extraction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret by researchers/users, shorter training times, to avoid the curse of dimensionality, improve data's compatibility with a learning model class, encode inherent symmetries present in the input space.