Concept

Axiom of countable choice

Summary
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N. The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC). Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice . ACω holds in the Solovay model. ZF+ACω suffices to prove that the union of countably many countable sets is countable. The converse statement "assuming ZF, 'every countable union of countable sets is countable' implies ACω" does not hold, as witnessed by Cohen's First Model. ZF+ACω also suffices to prove that every infinite set is Dedekind-infinite (equivalently: has a countably infinite subset). ACω is particularly useful for the development of analysis, where many results depend on having a choice function for a countable collection of sets of real numbers. For instance, in order to prove that every accumulation point x of a set S ⊆ R is the limit of some sequence of elements of S \ {x}, one needs (a weak form of) the axiom of countable choice. When formulated for accumulation points of arbitrary metric spaces, the statement becomes equivalent to ACω. For other statements equivalent to ACω, see and . A common misconception is that countable choice has an inductive nature and is therefore provable as a theorem (in ZF, or similar, or even weaker systems) by induction. However, this is not the case; this misconception is the result of confusing countable choice with finite choice for a finite set of size n (for arbitrary n), and it is this latter result (which is an elementary theorem in combinatorics) that is provable by induction.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.