Multiplane 3D superresolution optical fluctuation imaging
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Optical coherence tomography (OCT) is an interferometric imaging technique that can provide depth resolved cross-sectional views of biological tissue. OCT employs light with low temporal and yet high spatial coherence. The sample is illuminated point by po ...
Diffusion magnetic resonance imaging (dMRI) is a non-invasive method that allows connectivity mapping of the brain. However, despite major advances in this field, accurate inference of these patterns and its applicability within a clinical context is still ...
Infrared scanning near-field optical microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalc ...
The present thesis develops some specific aspects of digital holographic microscopy (DHM), namely the effect of shot noise on the phase image accuracy, the use of DHM in micro-tomography and in aberrations evaluation of a microscope objective (MO). DHM is ...
With the recent development of fluorescent probes and new high-resolution microscopes, biological imaging has entered a new era and is presently having a profound impact on the way research is being conducted in the life sciences. Biologists have come to d ...
A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. it relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct ...
This thesis introduces a collection of physics-based methods for super-resolution in optical microscopy. The core of these methods constitutes a framework for 3-D localization of single fluorescent molecules. Localization is formulated as a parameter estim ...
Triplet, photo-oxidized and other photoinduced, long-lived states of fluorophores are sensitive to the local environment and thus attractive for microenvironmental imaging purposes. In this work, we introduce an approach where these states are monitored in ...
We demonstrate nanometer-level localization accuracy of a single fluorescent emitter in three dimensions. Our super resolution microscopy technique is based on spectral self-interference for axial localization and two-dimensional diffraction pattern analys ...
Rapid acquisition of volumetric data is a mandatory prerequisite for small animal in vivo imaging. Due to its high sensitivity and capacity to extract the sample depth profile in parallel Fourier Domain Optical Coherence Tomography (FDOCT) complies with th ...