**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Optimization of mesh hierarchies in multilevel Monte Carlo samplers

Abstract

We perform a general optimization of the parameters in the multilevel Monte Carlo (MLMC) discretization hierarchy based on uniform discretization methods with general approximation orders and computational costs. We optimize hierarchies with geometric and non-geometric sequences of mesh sizes and show that geometric hierarchies, when optimized, are nearly optimal and have the same asymptotic computational complexity as non-geometric optimal hierarchies. We discuss how enforcing constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. These constraints include an upper and a lower bound on the mesh size or enforcing that the number of samples and the number of discretization elements are integers. We also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. To provide numerical grounds for our theoretical results, we apply these optimized hierarchies together with the Continuation MLMC Algorithm (Collier et al., BIT Numer Math 55(2):399–432, 2015). The first example considers a three-dimensional elliptic partial differential equation with random inputs. Its space discretization is based on continuous piecewise trilinear finite elements and the corresponding linear system is solved by either a direct or an iterative solver. The second example considers a one-dimensional Itô stochastic differential equation discretized by a Milstein scheme.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (43)

Related MOOCs (31)

Related concepts (34)

Ontological neighbourhood

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Warm-up for EPFL

Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.

Optimizing compiler

In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.

Polygon mesh

In 3D computer graphics and solid modeling, a polygon mesh is a collection of , s and s that defines the shape of a polyhedral object. The faces usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons (n-gons), since this simplifies rendering, but may also be more generally composed of concave polygons, or even polygons with holes. The study of polygon meshes is a large sub-field of computer graphics (specifically 3D computer graphics) and geometric modeling.

Iterative method

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones. A specific implementation with termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or quasi-Newton methods like BFGS, is an algorithm of the iterative method.

Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...

Fabio Nobile, Sebastian Krumscheid, Matthieu Claude Martin

We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected ...

2021We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of Optimal Control Problems (OCPs) constrained by random partial differential equ ...