Algebraic data typeIn computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types. Two common classes of algebraic types are product types (i.e., tuples and records) and sum types (i.e., tagged or disjoint unions, coproduct types or variant types). The values of a product type typically contain several values, called fields. All values of that type have the same combination of field types.
High-level programming languageIn computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.
Cross compilerA cross compiler is a compiler capable of creating executable code for a platform other than the one on which the compiler is running. For example, a compiler that runs on a PC but generates code that runs on an Android smartphone is a cross compiler. A cross compiler is useful to compile code for multiple platforms from one development host. Direct compilation on the target platform might be infeasible, for example on embedded systems with limited computing resources. Cross compilers are distinct from source-to-source compilers.
Generalized algebraic data typeIn functional programming, a generalized algebraic data type (GADT, also first-class phantom type, guarded recursive datatype, or equality-qualified type) is a generalization of parametric algebraic data types. In a GADT, the product constructors (called data constructors in Haskell) can provide an explicit instantiation of the ADT as the type instantiation of their return value. This allows defining functions with a more advanced type behaviour.
Covariance and contravariance (computer science)Many programming language type systems support subtyping. For instance, if the type is a subtype of , then an expression of type should be substitutable wherever an expression of type is used. Variance is how subtyping between more complex types relates to subtyping between their components. For example, how should a list of s relate to a list of s? Or how should a function that returns relate to a function that returns ? Depending on the variance of the type constructor, the subtyping relation of the simple types may be either preserved, reversed, or ignored for the respective complex types.
Compiler-compilerIn computer science, a compiler-compiler or compiler generator is a programming tool that creates a parser, interpreter, or compiler from some form of formal description of a programming language and machine. The most common type of compiler-compiler is more precisely called a parser generator. It only handles syntactic analysis. The input of a parser generator is a grammar file, typically written in Backus–Naur form (BNF) or extended Backus–Naur form (EBNF) that defines the syntax of a target programming language.
Bootstrapping (compilers)In computer science, bootstrapping is the technique for producing a self-compiling compiler – that is, a compiler (or assembler) written in the source programming language that it intends to compile. An initial core version of the compiler (the bootstrap compiler) is generated in a different language (which could be assembly language); successive expanded versions of the compiler are developed using this minimal subset of the language.
Proportional representationProportional representation (PR) refers to a type of electoral system under which subgroups of an electorate are reflected proportionately in the elected body. The concept applies mainly to political divisions (political parties) among voters. The essence of such systems is that all votes cast - or almost all votes cast - contribute to the result and are effectively used to help elect someone - not just a bare plurality or (exclusively) the majority - and that the system produces mixed, balanced representation reflecting how votes are cast.
Self-hosting (compilers)In computer programming, self-hosting is the use of a program as part of the toolchain or operating system that produces new versions of that same program—for example, a compiler that can compile its own source code. Self-hosting software is commonplace on personal computers and larger systems. Other programs that are typically self-hosting include kernels, assemblers, command-line interpreters and revision control software. An operating system is self-hosted when the toolchain to build the operating system runs on that same operating system.
DebuggerA debugger or debugging tool is a computer program used to test and debug other programs (the "target" program). The main use of a debugger is to run the target program under controlled conditions that permit the programmer to track its execution and monitor changes in computer resources that may indicate malfunctioning code. Typical debugging facilities include the ability to run or halt the target program at specific points, display the contents of memory, CPU registers or storage devices (such as disk drives), and modify memory or register contents in order to enter selected test data that might be a cause of faulty program execution.