Coherent Excitonic Coupling in an Asymmetric Double InGaAs Quantum Well Arises from Many-Body Effects
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
This thesis is devoted to the investigation of static and dynamic properties of
two different sets of quantum magnets with neutron scattering techniques and
the help of linear spin wave theory.
Both systems are copper-based with spin-1/2, which makes them ...
The hemocyanin protein binds and transports molecular oxygen via two copper atoms at its core. The singlet state of the Cu2O2 core is thought to be stabilised by a superexchange pathway, but detailed in situ computational analysis is complicated by the mul ...
I present a molecular beam study of methane dissociation on differ-ent surface sites of several platinum single crystal surfaces (Pt(111), Pt(211), Pt(210), Pt(110)-(2x1)). The experiments were performed in a molecular beam/surface-science apparatus that c ...
Cavity quantum electrodynamics (QED) manipulates the coupling of light with matter, and allows several emitters to couple coherently with one light mode1. However, even in a many-body system, the light–matter coupling mechanism has so far been restricted t ...
Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of ...
Metal–organic frameworks show both fundamental interest and great promise for applications in adsorption-based technologies, such as the separation and storage of gases. The flexibility and complexity of the molecular scaffold pose a considerable challenge ...
The study of quantum matter has become a great part of modern physics research. Quantum criticality appears in the vicinity of a quantum critical point where there is an interplay between quantum and thermal fluctuations. In the quantum critical region, ’e ...
A primary challenge in quantum science and technology is to isolate the fragile quantum states from their environment in order to prevent the irreversible leakage of energy and information which causes decoherence. In the late 1990s, however, a new paradig ...
We report on the direct observation of the diffusion of carriers in graded InGaN/GaN quantum wells in a nanowire. By probing the local dynamics at the nanoscale, along the wire for different temperatures between 4 and 250 K, we conclude that this diffusion ...