Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The excessive volatility of prices in financial markets is one of the most pressing puzzles in social science. It has led many to question economic theory, which attributes beneficial effects to markets in the allocation of risks and the aggregation of information. In exploring its causes, we investigated to what extent excessive volatility can be observed at the individual level. Economists claim that securities prices are forecasts of future outcomes. Here, we report on a simple experiment in which participants were rewarded to make the most accurate possible forecast of a canonical financial time series. We discovered excessive volatility in individual-level forecasts, paralleling the finding at the market level. Assuming that participants updated their beliefs based on reinforcement learning, we show that excess volatility emerged because of a combination of three factors. First, we found that submitted forecasts were noisy perturbations of participants' revealed beliefs. Second, beliefs were updated using a prediction error based on submitted forecast rather than revealed past beliefs. Third, in updating beliefs, participants maladaptively decreased learning speed with prediction risk. Our results reveal formerly undocumented features in individual-level forecasting that may be critical to understand the inherent instability of financial markets and inform regulatory policy.
Joseph Chadi Benoit Lemaitre, Pan Xu, Weitong Zhang, Yijin Wang, Wei Cao, Myungjin Kim, Shan Yu, Xinyi Li, Lei Gao, Yuxin Huang
Ekaterina Krymova, Nicola Parolini, Andrea Kraus, David Kraus, Daniel Lopez, Yijin Wang, Markus Scholz, Tao Sun