**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Forecasting

Summary

Forecasting is the process of making predictions based on past and present data. Later these can be compared (resolved) against what happens. For example, a company might estimate their revenue in the next year, then compare it against the actual results creating a variance actual analysis. Prediction is a similar but more general term. Forecasting might refer to specific formal statistical methods employing time series, cross-sectional or longitudinal data, or alternatively to less formal judgmental methods or the process of prediction and resolution itself. Usage can vary between areas of application: for example, in hydrology the terms "forecast" and "forecasting" are sometimes reserved for estimates of values at certain specific future times, while the term "prediction" is used for more general estimates, such as the number of times floods will occur over a long period.
Risk and uncertainty are central to forecasting and prediction; it is generally considered a good practice to in

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related concepts (41)

Prediction

A prediction (Latin præ-, "before," and dicere, "to say"), or forecast, is a statement about a future event or data. They are often, but not always, based upon experience or knowledge. There is no u

Statistics

Statistics (from German: Statistik, "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and present

Time series

In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. T

Related units (14)

Related courses (48)

ME-419: Production management

Production management deals with producing goods sustainably at the right time, quantity, and quality with the minimum cost. This course equips students with practical skills and tools for manufacturing companies' demand management, supply management, and advanced supply chain analytics.

FIN-403: Econometrics

The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.

MGT-427: Project management and risk analysis

Ce cours a pour objectif de présenter l'approche générale du management de projet en intégrant la gestion du risque dans toutes les étapes du projet.

Related publications (100)

Loading

Loading

Loading

Accurate traffic density estimations is essential for numerous purposes like the developing successful transit policies or to forecast future traffic conditions for navigation. Current developments in the machine learning and computer systems bring the transportation industry numerous possibilities to improve their operations using data analyses on traffic flow sensor data . However, even state-of-art algorithms for time series forecasting perform well on some transportation problems, they still fail to solve some critical tasks. In particular, existing traffic flow forecasting methods that are not utilising causality relations between different data sources are still unsatisfying for many real-world applications . In this report, we have focused on a new method named joint fusion learning that uses underlying causality in time series. We test our method in a very detailed synthetic environment that we specially developed to imitate real-world traffic flow dataset. In the end, we use our joint-fusion learning on a historical traffic flow dataset for Thessaloniki, Greece which is published by Hellenic Institute of Transport (HIT) . We obtained better results on the short-term forecasts compared the widely-used benchmarks models that uses single time series to forecast the future.

2019Powerful mathematical tools have been developed for trading in stocks and bonds, but other markets that are equally important for the globalized world have to some extent been neglected. We decided to study the shipping market as an new area of development in mathematical finance. The market in shipping derivatives (FFA and FOSVA) has only been developed after 2000 and now exhibits impressive growth. Financial actors have entered the field, but it is still largely undiscovered by institutional investors. The first part of the work was to identify the characteristics of the market in shipping, i.e. the segmentation and the volatility. Because the shipping business is old-fashioned, even the leading actors on the world stage (ship owners and banks) are using macro-economic models to forecast the rates. If the macro-economic models are logical and make sense, they fail to predict. For example, the factor port congestion has been much cited during the last few years, but it is clearly very difficult to control and is simply an indicator of traffic. From our own experience it appears that most ship owners are in fact market driven and rather bad at anticipating trends. Due to their ability to capture large moves, we chose to consider Lévy processes for the underlying price process. Compared with the macro-economic approach, the main advantage is the uniform and systematic structure this imposed on the models. We get in each case a favorable result for our technology and a gain in forecasting accuracy of around 10% depending on the maturity. The global distribution is more effectively modelled and the tails of the distribution are particularly well represented. This model can be used to forecast the market but also to evaluate the risk, for example, by computing the VaR. An important limitation is the non-robustness in the estimation of the Lévy processes. The use of robust estimators reinforces the information obtained from the observed data. Because maximum likelihood estimation is not easy to compute with complex processes, we only consider some very general robust score functions to manage the technical problems. Two new class of robust estimators are suggested. These are based on the work of F. Hampel ([29]) and P. Huber ([30]) using influence functions. The main idea is to bound the maximum likelihood score function. By doing this a bias is created in the parameters estimation, which can be corrected by using a modification of the following type and as proposed by F. Hampel. The procedure for finding a robust estimating equation is thus decomposed into two consecutive steps : Subtract the bias correction and then Bound the score function. In the case of complex Lévy processes, the bias correction is difficult to compute and generally unknown. We have developed a pragmatic solution by inverting the Hampel's procedure. Bound the score function and then Correct for the bias. The price is a loss of the theoretical properties of our estimators, besides the procedure converges to maximum likelihood estimate. A second solution to for achieving robust estimation is presented. It considers the limiting case when the upper and lower bounds tend to zero and leads to B-robust estimators. Because of the complexity of the Lévy distributions, this leads to identification problems.

Related people (21)

, , , , , , , , ,

Related lectures (103)