Publication

Two-Fold Odd-Even Effect in Self-Assembled Nanowires from Oligopeptide-Polymer-Substituted Perylene Bisimides

Abstract

Organic nanowires are important building blocks for nanoscopic organic electronic devices. In order to ensure efficient charge transport through such nanowires, it is important to understand in detail the molecular parameters that guide self-assembly of pi-conjugated molecules into one-dimensional stacks with optimal constructive pi-pi overlap. Here, we investigated the subtle relationship between molecular structure and supramolecular arrangement of the chromophores in self-assembled nanowires prepared from perylene bisimides with oligopeptide-polymer side chains. We observed a "two-fold" odd-even effect in circular dichroism spectra of these derivatives, depending on both the number of L-alanine units in the oligopeptide segments and length of the alkylene spacer between chromophore and oligopeptide substituents. Our results indicate that there is a complex interplay between the translation of molecular chirality into supramolecular helicity and the molecules' inherent propensity for well-defined one-dimensional aggregation into beta-sheet-like superstructures in the presence of a central chromophore. Strong excitonic coupling as expressed by the appearance of hypsochromically and bathochromically shifted UV-vis absorptions and strong CD signals was systematically observed for molecules with an odd number of L-alanines in the side chains. The latter derivatives gave rise to nanowires with a significantly higher electron mobility. Our results, hence, provide an important design rule for self-assembled organic nanowires.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Supramolecular assembly
In chemistry, a supramolecular assembly is a complex of molecules held together by noncovalent bonds. While a supramolecular assembly can be simply composed of two molecules (e.g., a DNA double helix or an inclusion compound), or a defined number of stoichiometrically interacting molecules within a quaternary complex, it is more often used to denote larger complexes composed of indefinite numbers of molecules that form sphere-, rod-, or sheet-like species.
Nanowire
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "quantum wires". Many different types of nanowires exist, including superconducting (e.g. YBCO), metallic (e.g. Ni, Pt, Au, Ag), semiconducting (e.g.
Molecular geometry
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determine the position of each atom. Molecular geometry influences several properties of a substance including its reactivity, polarity, phase of matter, color, magnetism and biological activity. The angles between bonds that an atom forms depend only weakly on the rest of molecule, i.
Show more
Related publications (41)

Architecture-Controllable Single-Crystal Helical Self-assembly of Small-Molecule Disulfides with Dynamic Chirality

Lukas Pfeifer, Qixing Zhang

Beyond the common supramolecular helical polymers in solutions, controlling single-crystal helical self-assembly with precisely defined chirality and architectures has been challenging. Here, we report that simply merging static homochiral amino acids with ...
AMER CHEMICAL SOC2023

Scalable fabrication of functional nanostructures on stretchable substrates by capillary-assisted particle assembly and adhesion lithography

Henry Shao-Chi Yu

The fabrication of metallic nanostructures on stretchable substrates enables specific applications that exploit the combination of the nano-scale phenomena and the mechanical tunability of the physical dimensions of the nanostructures. Due to the large dif ...
EPFL2022

Precise Capillary‐Assisted Nanoparticle Assembly in Reusable Templates

Jürgen Brugger, Olivier Martin, Giovanni Boero, Hsiang-Chu Wang, Ana Conde Rubio, Henry Shao-Chi Yu

Capillary-assisted particle assembly (CAPA) in predefined topographical templates is a scalable method for the precise positioning of nanoscale objects on various surfaces. High-resolution CAPA templates are typically fabricated by expensive electron-beam ...
2022
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.