Persistent conductive footprints of 109 degrees domain walls in bismuth ferrite films
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Ferroelectric materials, upon electric field biasing, display polarization discontinuities known as Barkhausen jumps, a subclass of a more general phenomenon known as crackling noise. Herein, we follow at the nanoscale the motion of 90 degree needle domain ...
"More with less" has been the motto behind the hardware miniaturization trend in the microelectronics industry since the 1970s. Active research in the growth of oxide films, including ferroelectrics, which started soon after, followed the same trend. Meanw ...
Composite films based on dispersions of bismuth ferrite (BiFeO3) in polyvinylidene fluoride (PVDF) matrixes were prepared in the presence of multiwalled-carbon-nanotubes (MWCNT), using xanthan gum (XG) as dispersant. Films were prepared by spin coating and ...
Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this sce ...
The results of recent studies of domain walls and their interaction with defects in BaTiO3, Pb(Zr, Ti)O-3, and BiFeO3 are discussed. The studies reveal why donor- and acceptor-doped Pb(Zr, Ti)O-3 behave differently, what is the role of stationary charged d ...
The motion of ferroelectric domain walls greatly contributes to the macroscopic dielectric and piezoelectric response of ferroelectric materials. The domain-wall motion through the ferroelectric material is, however, hindered by pinning on crystal defects, ...
In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was trea ...
Many perovskite materials experience a temperature-driven phase transition at the Curie temperature from a non-centrosymmetric polar ferroelectric phase to a paraelectric phase, where polarization is lost. The paraelectric phase is usually centrosymmetric ...
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O-3 [PZT] ceramics. The origin of the donor-dopant effects is not entirely clear. (Pb,Ba)ZrO ...
An essential feature of ferroelectric thin films is the presence in them of domain structures. In order to efficiently implement ferroelectric films into potential new ferroelectrics-based devices, it is of high interest to understand the behaviour of doma ...