Persistent conductive footprints of 109 degrees domain walls in bismuth ferrite films
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Ferroelectric materials, upon electric field biasing, display polarization discontinuities known as Barkhausen jumps, a subclass of a more general phenomenon known as crackling noise. Herein, we follow at the nanoscale the motion of 90 degree needle domain ...
Many perovskite materials experience a temperature-driven phase transition at the Curie temperature from a non-centrosymmetric polar ferroelectric phase to a paraelectric phase, where polarization is lost. The paraelectric phase is usually centrosymmetric ...
Composite films based on dispersions of bismuth ferrite (BiFeO3) in polyvinylidene fluoride (PVDF) matrixes were prepared in the presence of multiwalled-carbon-nanotubes (MWCNT), using xanthan gum (XG) as dispersant. Films were prepared by spin coating and ...
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O-3 [PZT] ceramics. The origin of the donor-dopant effects is not entirely clear. (Pb,Ba)ZrO ...
The motion of ferroelectric domain walls greatly contributes to the macroscopic dielectric and piezoelectric response of ferroelectric materials. The domain-wall motion through the ferroelectric material is, however, hindered by pinning on crystal defects, ...
Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this sce ...
An essential feature of ferroelectric thin films is the presence in them of domain structures. In order to efficiently implement ferroelectric films into potential new ferroelectrics-based devices, it is of high interest to understand the behaviour of doma ...
The results of recent studies of domain walls and their interaction with defects in BaTiO3, Pb(Zr, Ti)O-3, and BiFeO3 are discussed. The studies reveal why donor- and acceptor-doped Pb(Zr, Ti)O-3 behave differently, what is the role of stationary charged d ...
In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was trea ...
"More with less" has been the motto behind the hardware miniaturization trend in the microelectronics industry since the 1970s. Active research in the growth of oxide films, including ferroelectrics, which started soon after, followed the same trend. Meanw ...