Capacitive Detuning Optimization for Wireless Uplink Communication in Neural Implants
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...
Collaborative efforts between basic scientists, engineers, and clinicians are enabling translational epileptology. In this article, we summarize the recent advances presented at the International Conference for Technology and Analysis of Seizures (ICTALS 2 ...
Wireless communications are currently faced with two main challenges. The first challenge stems from the enormous number of Internet of Things (IoT) devices that transmit very small amounts of data. The second challenge is the need for ever-increasing data ...
The impact of technological advancement became significant and still has an essential role to play in the diagnosis and treatment of diseases. Nowadays, personalized medicine and therapy are on the rise as a consequence of the developed and cheaper medical ...
The exponential growth in computing power and multimedia services has caused a tremendous increase in data traffic in recent years. This increase in data traffic brings a strong demand for data bandwidth of electrical input/output (I/O) links and pushes th ...
The wireless power transfer (WPT) efficiency to implanted bioelectronic devices is constrained by several frequency-dependent physical mechanisms. Recent works have developed several mathematical formulations to understand these mechanisms and predict the ...
The viable and safe application of wireless power transfer for powering bioelectronic implants requires understanding the wave propagation in heterogeneous and dispersive media, the electromagnetic exposure assessment, and the optimum design of the system ...
The efficiency of an on-body wireless power transfer system for implant powering is defined by how the electromagnetic energy interacts with the lossy, heterogeneous, and dispersive body tissues. The objective of this study is to discuss the methodology an ...
This thesis aims to explore and exploit trade-offs in integrated circuits and systems to overcome the fundamental bottlenecks faced by future data acquisition and communication systems. Specifically, we target the emerging implantable neurotechnology and t ...
Despite the huge complexity of the foreign body reaction, a quantitative assessment over time of the scar tissue thickness around implanted materials is needed to figure out the evolution of neural implants for long times. A data-driven approach, based on ...