Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We report a novel electron-rich molecule based on 3,4-ethylenedioxythiophene (H101). When used as the hole-transporting layer in a perovskite-based solar cell, the power-conversion efficiency reached 13.8% under AM 1.5G solar simulation. This result is comparable with that obtained using the well-known hole transporting material 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-OMeTAD). This is the first heterocycle-containing material achieving >10% efficiency in such devices, and has great potential to replace the expensive spiro-OMeTAD given its much simpler and cheaper synthesis.
Christophe Ballif, Quentin Thomas Jeangros, Christian Michael Wolff, Daniel Anthony Jacobs, Kerem Artuk, Xin Yu Chin