Relatively little is known about the dynamics of electron-transfer reactions at low collision energy. We present a study of Penning ionization of ground-state methyl fluoride molecules by electronically excited neon atoms in the 13 μeV–4.8 meV (150 mK–56 K) collision energy range, using a neutral–neutral merged beam setup. Relative cross sections have been measured for three Ne(3P2) + CH_3F reaction channels by counting the number of CH_3F^+, CH_2F^+, and CH_3^+ product ions as a function of relative velocity between the neon and methyl fluoride molecular beams. Experimental cross sections markedly deviate from the Langevin capture model at collision energies above 20 K. The branching ratios are constant. In other words, the chemical shape of the CH3F molecule, as seen by the Ne(3P2) atom, appears not to change as the collision energy is varied, in contrast to related Ne(3PJ) + CH_3X (X = Cl and Br) reactions at higher collision energies.
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Vladimir Petrov, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer