**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Liouville's theorem and Laurent Series Expansions for Solutions of the Heat Equation

Abstract

We give a Liouville theorem for entire solutions and Laurent series expansions for solutions with isolated singularities of the heat equation.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (36)

Related MOOCs (18)

Ontological neighbourhood

Related concepts (30)

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Introduction aux nombres complexes

Laurent series

In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.

Isolated singularity

In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z0 is an isolated singularity of a function f if there exists an open disk D centered at z0 such that f is holomorphic on D \ {z0}, that is, on the set obtained from D by taking z0 out. Formally, and within the general scope of general topology, an isolated singularity of a holomorphic function is any isolated point of the boundary of the domain .

Series expansion

In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division). The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.

We study the existence and propagation of singularities of the solution to a one-dimensional linear stochastic wave equation driven by an additive Gaussian noise that is white in time and colored in space. Our approach is based on a simultaneous law of the ...

,

The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex eigenvalues (poles and ...

,

We show that mixed-characteristic and equicharacteristic small deformations of 3-dimensional canonical (resp., terminal) singularities with perfect residue field of characteristic p>5 are canonical (resp., terminal). We discuss applications to arithmetic a ...