Thermal management (electronics)All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.
Optical discAn optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to the be detected on the other side. Optical discs can store analog information (e.g. Laserdisc), digital information (e.g. DVD), or store both on the same disc (e.g. CD Video).
SystemA system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and is expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences. Systems have several common properties and characteristics, including structure, function(s), behavior and interconnectivity.
Thermal resistanceThermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Thermal resistance is the reciprocal of thermal conductance. (Absolute) thermal resistance R in kelvins per watt (K/W) is a property of a particular component. For example, a characteristic of a heat sink. Specific thermal resistance or thermal resistivity Rλ in kelvin–metres per watt (K⋅m/W), is a material constant.
Thermodynamic systemA thermodynamic system is a body of matter and/or radiation, considered as separate from its surroundings, and studied using the laws of thermodynamics. Thermodynamic systems may be isolated, closed, or open. An isolated system exchanges no matter or energy with its surroundings, whereas a closed system does not exchange matter but may exchange heat and experience and exert forces. An open system can interact with its surroundings by exchanging both matter and energy.
Thermal design powerThe thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate under any workload. Some sources state that the peak power rating for a microprocessor is usually 1.5 times the TDP rating. Intel has introduced a new metric called scenario design power (SDP) for some Ivy Bridge Y-series processors.
File systemIn computing, a file system or filesystem (often abbreviated to fs) is a method and data structure that the operating system uses to control how data is stored and retrieved. Without a file system, data placed in a storage medium would be one large body of data with no way to tell where one piece of data stopped and the next began, or where any piece of data was located when it was time to retrieve it. By separating the data into pieces and giving each piece a name, the data are easily isolated and identified.
Climate systemEarth's climate system is a complex system having five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things). Climate is the statistical characterization of the climate system, representing the average weather, typically over a period of 30 years, and is determined by a combination of processes in the climate system, such as ocean currents and wind patterns.