Summary
An optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to the be detected on the other side. Optical discs can store analog information (e.g. Laserdisc), digital information (e.g. DVD), or store both on the same disc (e.g. CD Video). Their main uses are the distribution of media and data, and long-term archival. The encoding material sits atop a thicker substrate (usually polycarbonate) that makes up the bulk of the disc and forms a dust defocusing layer. The encoding pattern follows a continuous, spiral path covering the entire disc surface and extending from the innermost track to the outermost track. The data are stored on the disc with a laser or stamping machine, and can be accessed when the data path is illuminated with a laser diode in an optical disc drive that spins the disc at speeds of about 200 to 4,000 RPM or more, depending on the drive type, disc format, and the distance of the read head from the center of the disc (outer tracks are read at a higher data speed due to higher linear velocities at the same angular velocities). Most optical discs exhibit a characteristic iridescence as a result of the diffraction grating formed by their grooves. This side of the disc contains the actual data and is typically coated with a transparent material, usually lacquer. The reverse side of an optical disc usually has a printed label, sometimes made of paper but often printed or stamped onto the disc itself. Unlike the 3-inch floppy disk, most optical discs do not have an integrated protective casing and are therefore susceptible to data transfer problems due to scratches, fingerprints, and other environmental problems. Blu-rays have a coating called durabis that mitigates these problems. Optical discs are usually between in diameter, with being the most common size.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)

Loading

Loading

Loading

Show more
Related concepts (86)
Blu-ray
Blu-ray (Blu-ray Disc or BD) is a digital optical disc data storage format. It was invented and developed in 2005 and released worldwide on June 20, 2006. It was designed to supersede the DVD format, capable of storing several hours of high-definition video (HDTV 720p and 1080p). The main application of Blu-ray is as a medium for video material such as feature films and for the physical distribution of video games for the PlayStation 3, PlayStation 4, PlayStation 5, Xbox One, and Xbox Series X.
Optical disc
An optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to the be detected on the other side. Optical discs can store analog information (e.g. Laserdisc), digital information (e.g. DVD), or store both on the same disc (e.g. CD Video).
CD-R
CD-R (Compact disc-recordable) is a digital optical disc storage format. A CD-R disc is a compact disc that can be written once and read arbitrarily many times. CD-R discs (CD-Rs) are readable by most CD readers manufactured prior to the introduction of CD-R, unlike CD-RW discs. Originally named CD Write-Once (WO), the CD-R specification was first published in 1988 by Philips and Sony in the Orange Book, which consists of several parts that provide details of the CD-WO, CD-MO (Magneto-Optic), and later CD-RW (Re Writable).
Show more
Related courses (11)
CH-443: Photochemistry II
Following "Photochemistry I", this course introduces the current theoretical models regarding the dynamics of electron transfer. It focuses then on photoredox processes at the surface of solids. Curre
MICRO-608: Optical Computing
In this course we will start with a brief history of optical computing, describe methods for implementing optical interconnection and logic and then spend most of our time on learning about the recent
MICRO-330: Sensors
Comprendre les principes physiques utilisés dans les capteurs. Vue générale des différents principes de transduction et de l'électronique associée. Montrer des exemples d'application.
Show more
Related lectures (110)
Polar Coordinates: Jacobian Matrix and Examples
Covers polar coordinates, the Jacobian matrix, and examples of calculating areas in polar coordinates.
Propagating Waves
Explores propagating waves in the brain through optical recordings and phase gradients.
Additive optics fabrication
Explores additive optics fabrication using 3D printing for custom optical components.
Show more