Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Electrolyte materials are the key components in dye-sensitized solar cells (DSCs) and are very crucial to the performance and long-term stability of DSCs. We developed a series of diamide derivatives as novel low molecular mass organogelators (LMOGs) for DSCs. These LMOGs contain different numbers (2, 6, 5 and 9) of methylene groups (-CH2-) between the two amide carbonyl groups and exhibit distinctive self-assembly behaviors. The gel electrolytes prepared by these LMOGs possess high gel-to-solution transition temperatures (over 100 degrees C) and the stability of DSCs is largely enhanced. More importantly, the parity of the number of -CH2- and their special molecular arrangements have a remarkable influence on the self-assembly of the gelators resulting in a significantly different morphology, and further influence the photovoltaic performances of DSCs. It is found that the LMOGs containing odd-numbered -CH2- lead to a much better charge transport of the gel electrolytes, inducing a longer electron lifetime and higher incident photon-to-electron conversion efficiency compared with the LMOGs containing even-numbered -CH2-. Finally, a superior quasi-solid-state DSC based on the gelator containing five -CH2- is obtained, which exhibits a photoelectric conversion efficiency of 7.53% and excellent thermal and light-soaking stabilities during accelerated aging tests.
Michael Graetzel, Mohammad Khaja Nazeeruddin