New algorithms for discrete dislocation modeling of fracture
Related publications (31)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
The introduction of a well-controlled population of coherent twin boundaries (CTBs) is an attractive route to improve the strength ductility product in face centered cubic (FCC) metals. However, the elementary mechanisms controlling the interaction between ...
The topological classification of matter has been extended to include semimetallic phases characterized by the presence of topologically protected band degeneracies. In Weyl semimetals, the foundational gapless topological phase, chiral degeneracies are is ...
Capturing plasticity at realistic dislocation densities with high configurational complexity requires a continuum-level discrete dislocation dynamics (DDD) description. However, many features controlling dislocation motion are inherently atomistic, such as ...
Recent advances on low-dimensional and topological materials has greatly inspired the research in condensed matter physics. This thesis is devoted to the computational and theoretical study of topological effects in two-dimensional materials, especially na ...
The performance of crystalline materials varies depending on the considered scale. To understand the size dependence of materials properties, the interaction and evolution of defects are essential. As such, the role played by dislocations is crucial for mo ...
Defects are key to enhance or deploy particular materials properties. In this thesis I present analyses of the impact of defects on the electronic structure of materials using combined experimental and theoretical Electron energy loss spectroscopy (EELS) i ...
Capturing plasticity at realistic dislocation densities with high configurational complexity requires a continuum-leveldiscrete dislocation dynamics (DDD) description. However, many features controlling dislocation motion areinherently atomistic, such as t ...