Perovskite solar cells with submicrometre-thick CH3NH3PbI3 or CH3NH3PbI3-xClx active layers show a power conversion efficiency as high as 15%. However, compared to the best-performing device, the average efficiency was as low as 12%, with a large standard deviation (s.d.). Here, we report perovskite solar cells with an average efficiency exceeding 16% and best efficiency of 17%. This was enabled by the growth of CH3NH3PbI3 cuboids with a controlled size via a two-step spin-coating procedure. Spin-coating of a solution of CH3NH3I with different concentrations follows the spin-coating of PbI2, and the cuboid size of CH3NH3PbI3 is found to strongly depend on the concentration of CH3NH3I. Light-harvesting efficiency and charge-carrier extraction are significantly affected by the cuboid size. Under simulated one-sun illumination, average efficiencies of 16.4% (s.d. +/- 0.35), 16.3% (s.d. +/- 0.44) and 13.5% (s.d. +/- 0.34) are obtained from solutions of CH3NH3I with concentrations of 0.038 M, 0.050 M and 0.063 M, respectively. By controlling the size of the cuboids of CH3NH3PbI3 during their growth, we achieved the best efficiency of 17.01% with a photocurrent density of 21.64 mA cm(-2), open-circuit photovoltage of 1.056 V and fill factor of 0.741.
Michael Graetzel, Shaik Mohammed Zakeeruddin, Felix Thomas Eickemeyer, Peng Wang, Ming Ren
Mohammad Khaja Nazeeruddin, Jianxing Xia, Ruiyuan Hu
Mohammad Khaja Nazeeruddin, Yong Ding, Bin Ding, Xianfu Zhang