**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Self-adjoint operator

Summary

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A^∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as position, momentum, angular momentum and spin are represented by self-adjoint operators on a Hilbert space. Of particular significance is the Hamiltonian operator defined by
which as an observable corresponds to the total energy of a particle of mass m in a real potential field V. Differential operators are an important class of unbounded operators.
The structure of self-adjoint operators on infinite-dimensional Hilbert spaces essentially resembles the finite-dimensional case. That is to say, operators are self-adjoint if and only if they are unitarily equivalent to real-valued multiplication operators. With suitable modifications, this result can be extended to possibly unbounded operators on infinite-dimensional spaces. Since an everywhere-defined self-adjoint operator is necessarily bounded, one needs be more attentive to the domain issue in the unbounded case. This is explained below in more detail.
Let be an unbounded (i.e. not necessarily bounded) operator with a dense domain This condition holds automatically when is finite-dimensional since for every linear operator on a finite-dimensional space.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (3)

Related concepts (78)

Self-adjoint operator

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A^∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers.

Integration by parts

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

Related MOOCs (2)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Introduction to Object-Oriented Programming in C++

Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..

Related people (2)

Related courses (56)

MATH-404: Functional analysis II

We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In a second part of the course we discuss differential calculus in Banach

PHYS-314: Quantum physics II

L'objectif de ce cours est de familiariser l'étudiant avec les concepts, les méthodes et les conséquences de la physique quantique. En particulier, le moment cinétique, la théorie de perturbation, les

PHYS-432: Quantum field theory II

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.

Related lectures (481)

Compact Operators: Properties and TheoremsMATH-495: Mathematical quantum mechanics

Covers properties and theorems related to compact and relatively compact operators, including the RAGE theorem and the Kato-Rellich theorem.

Density Operators in Quantum Physics IIPHYS-314: Quantum physics II

Explores density operators in quantum physics, emphasizing their role in describing quantum system states.

Asymptotic States and S-matrix: OperatorsPHYS-432: Quantum field theory II

Explores asymptotic states, S-matrix, and operators in quantum field theory, emphasizing the role of discrete symmetries and complete sets of states.

In this PhD thesis we deal with two mathematical problems arising from quantum mechanics. We consider a spinless non relativistic quantum particle whose configuration space is a two dimensional surfac

We perform a detailed study of double Higgs production via gluon fusion in the effective field theory (EFT) framework where effects from new physics (NP) are parametrized by local operators. Our analy

In this note we provide an alternative way of defining the self-adjoint Hamiltonian of the harmonic oscillator perturbed by an attractive delta'-interaction, of strength beta, centred at 0 (the bottom