False discovery rateIn statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null). Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null).
Family-wise error rateIn statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. John Tukey developed in 1953 the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Ryan (1959) proposed the related concept of an experimentwise error rate, which is the probability of making a Type I error in a given experiment.
False coverage rateIn statistics, a false coverage rate (FCR) is the average rate of false coverage, i.e. not covering the true parameters, among the selected intervals. The FCR gives a simultaneous coverage at a (1 − α)×100% level for all of the parameters considered in the problem. The FCR has a strong connection to the false discovery rate (FDR). Both methods address the problem of multiple comparisons, FCR from confidence intervals (CIs) and FDR from P-value's point of view. FCR was needed because of dangers caused by selective inference.
False positive rateIn statistics, when performing multiple comparisons, a false positive ratio (also known as fall-out or false alarm ratio) is the probability of falsely rejecting the null hypothesis for a particular test. The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.
Multiple comparisons problemIn statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.
Bonferroni correctionIn statistics, the Bonferroni correction is a method to counteract the multiple comparisons problem. The method is named for its use of the Bonferroni inequalities. An extension of the method to confidence intervals was proposed by Olive Jean Dunn. Statistical hypothesis testing is based on rejecting the null hypothesis if the likelihood of the observed data under the null hypotheses is low. If multiple hypotheses are tested, the probability of observing a rare event increases, and therefore, the likelihood of incorrectly rejecting a null hypothesis (i.
False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).
Statistical significanceIn statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is statistically significant, by the standards of the study, when .
Harmonic mean p-valueThe harmonic mean p-value (HMP) is a statistical technique for addressing the multiple comparisons problem that controls the strong-sense family-wise error rate (this claim has been disputed). It improves on the power of Bonferroni correction by performing combined tests, i.e. by testing whether groups of p-values are statistically significant, like Fisher's method. However, it avoids the restrictive assumption that the p-values are independent, unlike Fisher's method.
Data dredgingData dredging (also known as data snooping or p-hacking) is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives. This is done by performing many statistical tests on the data and only reporting those that come back with significant results.