Through-bond phosphorus-phosphorus connectivities in crystalline and disordered phosphates by solid-state NMR
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki-Trotter algorithm and involving minimal memory requirem ...
Nuclear magnetic relaxation in the presence of paramagnetic centres has gained increasing interest in recent years partly due to its importance for contrast agents in magnetic resonance imaging. Rational design of new more efficient agents is possible as a ...
A general approach for structural interpretation of local disorder in partially ordered solids is proposed, combining high-resolution two-dimensional (2D) nuclear magnetic resonance (NMR) and first principles calculations. We show that small chemical shift ...
A two-dimensional proton-mediated carbon-carbon correlation experiment that relies on through-bond heteronuclear magnetization transfers is demonstrated in the context of solid-state NMR of proteins. This new experiment, dubbed J-CHHC by analogy to the pre ...
A refocused INEPT through-bond coherence transfer technique is demonstrated for NMR of rigid organic solids and is shown to provide a valuable building block for the development of NMR correlation experiments in biological solids. The use of efficient prot ...
We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T-2(')-selective H-1-C-13-C-13 correlation spectra for site-specific assignments of carbons nearby labile protein prot ...
Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On t ...
The molecular dynamics of a series of organometallic complexes covalently bound to amorphous silica surfaces is determined experimentally using solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory calculations (DFT). The ...
Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-d ...
Scalar (J) couplings in solid-state NMR spectroscopy are sensitive to covalent through-bond interactions that make them informative structural probes for a wide range of complex materials. Until now, however, they have been generally unsuitable for use in ...