Coupled Mathematical Models for Heart Integration: A Stability Study
Related publications (50)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
We consider the numerical approximation of lipid biomembranes at equilibrium described by the Canham-Helfrich model, according to which the bending energy is minimized under area and volume constraints. Energy minimization is performed via L-2-gradient flo ...
The accurate investigation of many geophysical phenomena via direct numerical simulations is computationally not possible nowadays due to the huge range of spatial and temporal scales to be resolved. Therefore advances in this field rely on the development ...
We propose and numerically assess three segregated ( partitioned) algorithms for the numerical solution of the coupled electromechanics problem for the left human ventricle. We split the coupled problem into its core mathematical models and we proceed to t ...
We consider Isogeometric Analysis (IGA) for the numerical solution of the electrophysiology of the atria, which in this work is modeled by means of the bidomain equations on thin surfaces. First, we consider the bidomain equations coupled with the Roger-Mc ...
An accurate solution of the wave equation at a fluid-solid interface requires a correct implementation of the boundary condition. Boundary conditions at acousto-elastic interface require continuity of the normal component of particle velocity and traction, ...