Cayley's theoremIn group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly, for each , the left-multiplication-by-g map sending each element x to gx is a permutation of G, and the map sending each element g to is an injective homomorphism, so it defines an isomorphism from G onto a subgroup of .
Pythagorean theoremIn mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.
Well-defined expressionIn mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well defined, ill defined or ambiguous. A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if takes real numbers as input, and if does not equal then is not well defined (and thus not a function).
Combinatorial principlesIn proving results in combinatorics several useful combinatorial rules or combinatorial principles are commonly recognized and used. The rule of sum, rule of product, and inclusion–exclusion principle are often used for enumerative purposes. Bijective proofs are utilized to demonstrate that two sets have the same number of elements. The pigeonhole principle often ascertains the existence of something or is used to determine the minimum or maximum number of something in a discrete context.
Geometric genusIn algebraic geometry, the geometric genus is a basic birational invariant p_g of algebraic varieties and complex manifolds. The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number h^n,0 (equal to h^0,n by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety V of complex dimension n it is the number of linearly independent holomorphic n-forms to be found on V.
Equality (mathematics)In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct. For example: means that x and y denote the same object. The identity means that if x is any number, then the two expressions have the same value.
Genus–differentia definitionA genus–differentia definition is a type of intensional definition, and it is composed of two parts: a genus (or family): An existing definition that serves as a portion of the new definition; all definitions with the same genus are considered members of that genus. the differentia: The portion of the definition that is not provided by the genus. For example, consider these two definitions: a triangle: A plane figure that has 3 straight bounding sides. a quadrilateral: A plane figure that has 4 straight bounding sides.
Binding (linguistics)In linguistics, binding is the phenomenon in which anaphoric elements such as pronouns are grammatically associated with their antecedents. For instance in the English sentence "Mary saw herself", the anaphor "herself" is bound by its antecedent "Mary". Binding can be licensed or blocked in certain contexts or syntactic configurations, e.g. the pronoun "her" cannot be bound by "Mary" in the English sentence "Mary saw her". While all languages have binding, restrictions on it vary even among closely related languages.
Object (grammar)In linguistics, an object is any of several types of arguments. In subject-prominent, nominative-accusative languages such as English, a transitive verb typically distinguishes between its subject and any of its objects, which can include but are not limited to direct objects, indirect objects, and arguments of adpositions (prepositions or postpositions); the latter are more accurately termed oblique arguments, thus including other arguments not covered by core grammatical roles, such as those governed by case morphology (as in languages such as Latin) or relational nouns (as is typical for members of the Mesoamerican Linguistic Area).