Comparison of programming languages (syntax)This comparison of programming languages compares the features of language syntax (format) for over 50 computer programming languages. Programming language expressions can be broadly classified into four syntax structures: prefix notation Lisp (* (+ 2 3) (expt 4 5)) infix notation Fortran (2 + 3) * (4 ** 5) suffix, postfix, or Reverse Polish notation Forth 2 3 + 4 5 ** * math-like notation TUTOR (2 + 3)(45) $$ note implicit multiply operator When a programming languages has statements, they typically have conventions for: statement separators; statement terminators; and line continuation A statement separator demarcates the boundary between two separate statements.
Functional programmingIn computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can.
C (programming language)C (pronounced 'siː – like the letter c) is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.
Function pointerA function pointer, also called a subroutine pointer or procedure pointer, is a pointer referencing executable code, rather than data. Dereferencing the function pointer yields the referenced function, which can be invoked and passed arguments just as in a normal function call. Such an invocation is also known as an "indirect" call, because the function is being invoked indirectly through a variable instead of directly through a fixed identifier or address. Function pointers allow different code to be executed at runtime.
Reference (computer science)In computer programming, a reference is a value that enables a program to indirectly access a particular data, such as a variable's value or a record, in the computer's memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference. A reference is distinct from the datum itself. A reference is an abstract data type and may be implemented in many ways. Typically, a reference refers to data stored in memory on a given system, and its internal value is the memory address of the data, i.
Distributed data storeA distributed data store is a computer network where information is stored on more than one node, often in a replicated fashion. It is usually specifically used to refer to either a distributed database where users store information on a number of nodes, or a computer network in which users store information on a number of peer network nodes. Distributed databases are usually non-relational databases that enable a quick access to data over a large number of nodes.
Futures and promisesIn computer science, future, promise, delay, and deferred refer to constructs used for synchronizing program execution in some concurrent programming languages. They describe an object that acts as a proxy for a result that is initially unknown, usually because the computation of its value is not yet complete. The term promise was proposed in 1976 by Daniel P. Friedman and David Wise, and Peter Hibbard called it eventual. A somewhat similar concept future was introduced in 1977 in a paper by Henry Baker and Carl Hewitt.
Concurrent computingConcurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A concurrent system is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming.
Typed lambda calculusA typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and untyped lambda calculus a special case with only one type.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.