**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer

Abstract

Large-eddy simulation is used to investigate very-large-scale motions (VLSMs) in the neutrally stratified atmospheric boundary layer at a very high friction Reynolds number, . The vertical height of the computational domain is m, which corresponds to the thickness of the boundary layer. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be and , which is much larger than the standard domain size, especially in the streamwise direction (i.e., the direction of elongation of the flow structures). It is shown that the contributions to the resolved turbulent kinetic energy and the resolved shear stress from streamwise wavelengths larger than are up to 27 and 31 % respectively. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large, up to in the streamwise direction and in the spanwise direction. These features are similar to those found in the logarithmic and outer regions of laboratory-scale boundary layers by direct numerical simulation and experiments conducted at low to moderate Reynolds numbers. The three-dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the cross-section perpendicular to the streamwise direction. These results are in agreement with recent observations in the atmospheric surface layer.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (21)

Large eddy simulation

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents,

Boundary layer

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction wi

Direct numerical simulation

A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the

Related publications (22)

Loading

Loading

Loading

Jiannong Fang, Fernando Porté Agel

In the last few decades, laboratory experiments and direct numerical simulations of turbulent boundary layers, performed at low to moderate Reynolds numbers, have found very-large-scale motions (VLSMs) in the logarithmic and outer regions. The size of VLSMs was found to be 10-20 times as large as the boundary-layer thickness. Recently, few studies based on field experiments examined the presence of VLSMs in neutral atmospheric boundary-layer flows, which are invariably at very high Reynolds numbers. Very large scale structures similar to those observed in laboratory-scale experiments have been found and characterized. However, it is known that field measurements are more challenging than laboratory-based measurements, and can lack resolution and statistical convergence. Such challenges have implications on the robustness of the analysis, which may be further adversely affected by the use of Taylor’s hypothesis to convert time series to spatial data. We use large-eddy simulation (LES) to investigate VLSMs in atmospheric boundary-layer flows. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be much larger than the standard domain size. It is shown that the contributions to the resolved turbulent kinetic energy and shear stress from VLSMs are significant. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large. These features are similar to those found in the logarithmic and outer regions of laboratory-scale boundary layers by direct numerical simulation and experiments conducted at low to moderate Reynolds numbers. The three-dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the cross-section perpendicular to the streamwise direction. These results are in agreement with recent observations in the atmospheric surface layer. Furthermore, the influences of the Coriolis force, the domain size, and the subgrid-scale model on VLSMs are investigated.

2015Charles Vivant Ignacio Meneveau, Marc Parlange

A simulation of a diurnal cycle of atmospheric boundary layer (ABL) flow over a homogeneous terrain is performed using large-eddy simulation (LES) with the Lagrangian scale-dependent dynamic subgrid-scale model. The surface boundary condition is derived from the field observations of surface heat flux from the HATS experiment (Horst et al., 2004; Kleissl et al., 2004). The simulation results display good general agreement with previous modeling and experimental studies with regard to characteristic features such as growth of the convective boundary layer by entrainment, nocturnal jet, and multilayered flow structure of the nocturnal regime. To gain a better understanding of the physical parameters affecting the statistics of the flow, we study the dependence of a subgrid parameter (dynamic Smagorinsky coefficient), resolved turbulent kinetic energy, and resolved vertical velocity variance upon atmospheric stability. The profiles of these turbulent variables plotted as a function of Obukhov length show “hysteretic” behavior that implies nonunique dependence. The subsequent use of local Richardson number as the scaling parameter shows a decrease in this “hysteresis,” but there is an increased scatter in the profiles with increasing height. Conversely, profiles plotted as a function of local Obukhov length (based on the fluxes at the local vertical level) show almost no hysteresis, confirming the validity of Nieuwstadt's local scaling hypothesis. Although the local scaling hypothesis was formulated for the stable boundary layer, we find that it applies to the entire stability range of the diurnal cycle.

River and open-channel flows are free surface boundary layer flows with complex 3D, large-scale, turbulent structures. The study of 2D and 3D large-scale turbulent flow structures is a great challenge for physicists, mathematicians and engineers from such different domains as civil, environmental and mechanic engineering. Different processes can generate 3D, large-scale, turbulent structures which occur at the same time. On the one hand, large scale vortical structures such as secondary currents of Prandtl's second kind play an important role in the understanding of 3D turbulent structures in straight channels and rivers. Secondary currents affect bottom shear stress and longitudinal mean velocity, and contribute to sediment transport and air-water gas exchange by creating upwelling and downwelling motion in the water column. At the free surface, such upwelling and downwelling motion is an important mechanism for the air-water gas exchange and is considered to be responsible for surface boils. On the other hand, experimental work in turbulent boundary layers revealed the existence of bursting resulting in hairpin shaped structures which are responsible for the link between the inner and the outer layer. The interaction between these two layers in turbulent boundary layers is considered in terms of the dynamics of momentum, energy, and Reynolds shear stress transport. In order to advance in the understanding of this fundamental problem in turbulent open-channel flow, recently developed measurement and observation techniques are used in this Ph.D study. A non-intrusive Acoustic Doppler Velocity Profiler (ADVP), Surface Large Scale Particle Image Velocimetry (LSPIV) and a hot-film probe were combined in the investigation of coherent structures, secondary currents, surface boils and their interaction in turbulent rough-bed open-channel flow. The ADVP permits to measure 3D quasi-instantaneous velocity profiles in the entire water depth and to investigate the mean field and the fluctuating field of all three velocity components. The LSPIV system, developed at the LHE, allows visualizing the water surface and obtaining the surface velocity information in relation to instantaneous surface vortical structures. Bottom shear stress was measured with a sensor based on the hot film principle. The instruments provided the mean and instantaneous velocity field in the entire water depth and at the free surface. Six sets of experiments were carried out in turbulent rough bed open-channel for three different width-to-depth ratios (12.25, 15 and 20) at high, moderate and low Reynolds numbers. The results of the ADVP measurements show mean longitudinal velocity patterns undulating across the channel which indicate patterns of secondary currents in the mean flow structure. Upwelling regions can be identified by lower relative mean longitudinal velocities close to the free surface, and downwelling regions can be identified by higher relative mean longitudinal velocities. It is observed that the existence of secondary currents affects the distribution of bed shear stress and Reynolds stress across the channel. Bed shear stress show a cross-channel undulation pattern with bed shear stress in downwelling areas being higher than in upwelling areas. The Reynolds shear stress distribution in the water column has revealed the same undulating pattern. The number of secondary flow cells is determined by the aspect ratio and relative roughness. It is found that the bottom roughness elements of the channel bed make these longitudinal cells stable. The Reynolds number does not affect the spanwise position of the upwelling and downwelling regions of the secondary cells, but it does affect and slightly increase the normalized Reynolds shear stress. Secondary currents with cells whose dimensions are equal to the flow depth are the most stable and dominant pattern. Changes in the vorticity pattern causes changes in turbulence characteristics in upwelling and downwelling regions. Our study and existing investigations demonstrated that one of the most probable mechanisms for the initiation of multi cellular secondary currents is the mutual interaction between the rough bed and the pre-existing secondary currents near the side wall. The occurrence of small and large scale coherent structures, such as hairpin packets, and their relation to secondary currents are investigated through a quantitative analysis of instantaneous flow fields over the entire turbulent boundary layer across the channel. Uniform momentum zones are clearly detected in the instantaneous velocity fields in the longitudinal direction. In the logarithmic layer, the coherent vortex packets originating from the wall layer frequently occur within larger moving zones of uniform momentum, and extend up to the middle of the boundary layer. Good results in terms of dimension and position of large coherent structures relating to zones of uniform streamwise momentum support the concept of a dynamic link of hairpin packets and zonal organization in the outer layer. Secondary currents are large-scale streamwise vortical structures that affect the organization of coherent structures in the outer layer. More hairpin vortex packets could be carried by upwelling, with positive vertical velocity increasing the height of Zone 2. In the downwelling region, the height of Zone 2 and the growth angle of the hairpin packets decrease compared to the upwelling region, because of the negative vertical mean velocity of the secondary currents. This may prevent hairpin vortex packets from reaching the free surface due to the higher gradient of the longitudinal velocity. A quadrant analysis in the upwelling and downwelling regions revealed that in the wall region of downwelling areas, sweep events are dominant, and in the region close to the free surface, ejection events dominate over sweep events. The dominance of ejection events at the free surface explains the occurrence of a large number of surface boils observed in the upwelling regions. The measurements have shown that secondary currents and coherent structures are correlated, thus producing 3D flow structures. The results from LSPIV show a mean multi-cellular pattern of faster and slower primary longitudinal surface velocities. Streaks of faster longitudinal velocity are found in downwelling areas. Upwelling areas are identified with lower velocities. In addition, we observed mean transversal surface currents between upwelling and downwelling zones. We have shown that near the surface, ejections which are part of the large scale burst cycle are more common in upwelling zones between secondary current cells. Measurements reveal that these vortex boils mainly occur in upwelling areas with high vorticity, whereas downwelling areas show lower vorticity. Up- and downwelling zones, as well as surface boils are observed at all Reynolds numbers and aspect ratios. Therefore, they can be considered important processes in river dynamics and affect transport between the surface and the pelagic zone. Based on the combined results from LSPIV, ADVP and hot-film data, this study experimentally demonstrated that secondary currents, surface boils and coherent structures are correlated and produce 3D flow structures. The effect of secondary currents on tracer distribution in open-channel and river flow is to disperse and mix tracers in three dimensions more rapidly than would be the case if turbulent diffusion were acting alone. This has important consequences for pollutant spreading. Together with surface boil vortices, these currents contribute to surface renewal and gas transfer. In downwelling zones, the water masses moved along the surface by the transversal currents are transported downwards faster than by turbulent mixing. Again, the dispersion and mixing due to secondary currents discussed above will then provide for rapid 3D distribution in the entire water column. This thesis is a contribution to understanding of the transport and mixing dynamics in open-channel flow with an emphasis on the effects of coherent structures, secondary currents and surface boils, as well as the interaction between them. The information which was obtained advances the understanding of fine and large scale dynamics in open-channel flow. At the same time it contributes to the improvement of algorithms in numerical predictive water quality models, which in turn improve effective water resources management.