CDW and Similarity of the Mott Insulator-to-Metal Transition in Cuprates with the Gas-to-Liquid-Liquid Transition in Supercooled Water
Related publications (75)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Transition metal oxides (TMOs) are emerging strong players in many domains, ranging from superconductivity, to microelectronics to spintronics to light harvesting for photovoltaics. Beyond their non-toxicity, low corrosiveness and low price, they exhibit a ...
More than one hundred years after the discovery of superconductivity in Leiden, the intriguing physics of several unconventional classes of superconductors continue to fascinate and challenge scientists from all over the world. The majority of these compou ...
We study the influence of the band structure on the symmetry and superconducting transition temperature in the (solvable) weak-coupling limit of the repulsive Hubbard model. Among other results we find that (1) as a function of increasing nematicity, start ...
The influence of dimensionality on the electronic properties of layered perovskite materials remains an outstanding issue. We address it here for Sr3Ir2O7, the bilayer compound of the iridate Srn+1IrnO3n+1 series. By angle-resolved photoemission spectrosco ...
We study oxygen K-edge x-ray absorption spectroscopy (XAS) and investigate the validity of the Zhang-Rice singlet (ZRS) picture in overdoped cuprate superconductors. Using large-scale exact diagonalization of the three-orbital Hubbard model, we observe the ...
It has been widely observed that an increasing carrier density in a strongly coupled semiconductor microcavity (MC) alters the dispersion of cavity polaritons, below and above the condensation threshold. The interacting nature of cavity polaritons stems fr ...
The first part of this thesis presents the theoretical study of an anomaly of unknown origin in the excitation spectrum of the Quantumspin-1/2 Heisenberg Square lattice Anti-Ferromagnet. The anomaly manifests itself in Inelastic Neutron Scattering data for ...
Boron vacancies at the Si( 111):B-root 3 surface are model systems in the comprehension of strongly correlated semiconductor surfaces. By using scanning tunneling spectroscopy, the origin of the single-vacancy electronic structure is addressed. It is shown ...
To explore the doping dependence of the recently discovered charge-density-wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previ ...
We study a quantum version of the three-state Potts model that includes as special cases the effective models of bosons and fermions on the square lattice in the Mott-insulating limit. It can be viewed as a model of quantum permutations with amplitudes J(p ...