Publication

The L-1-Potts Functional For Robust Jump-Sparse Reconstruction

Martin Kurt Storath
2015
Journal paper
Abstract

We investigate the nonsmooth and nonconvex L-1-Potts functional in discrete and continuous time. We show Gamma-convergence of discrete L-1-Potts functionals toward their continuous counterpart and obtain a convergence statement for the corresponding minimizers as the discretization gets finer. For the discrete L-1-Potts problem, we introduce an O(n(2)) time and O(n) space algorithm to compute an exact minimizer. We apply L-1-Potts minimization to the problem of recovering piecewise constant signals from noisy measurements f. It turns out that the L-1-Potts functional has a quite interesting blind deconvolution property. In fact, we show that mildly blurred jump-sparse signals are reconstructed by minimizing the L-1-Potts functional. Furthermore, for strongly blurred signals and a known blurring operator, we derive an iterative reconstruction algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Image segmentation
In and computer vision, image segmentation is the process of partitioning a into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
Discrete time and continuous time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
Ising model
The Ising model (ˈiːzɪŋ) (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a graph, usually a lattice (where the local structure repeats periodically in all directions), allowing each spin to interact with its neighbors.
Show more
Related publications (35)
Related MOOCs (16)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.