Resonance Raman scattering studies of a complete dye-sensitized solar cell (DSC) including iodine and lithium iodide in the electrolyte indicate that triiodide (I3-) exchange the SCN- ligand of the dye bis(tetrabutylammonium) cis-bis(thiocyanato)bis(2,2'-bipyridine-4-carboxylic acid, 4'-carboxylate)ruthenium(II). The choice of cation in the iodide salt influenced the ligand stability of the dye. It was proposed that an ion pair Li+···I3- formation occurred which by a reduced electrostatic repulsion between I3- and SCN- facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole (MBI) suppressed the SCN-/I3- ligand exchange by forming a complex with Li+. The concns. of Li+ and MBI have to be carefully balanced due to the SCN- ligand exchange with MBI in deficiency of Li+. In order to observe and understand the prevailing coordinative interactions between the components in a DSC, the use of characterization methods with which complete devices can be studied is necessary.
Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu
Michael Graetzel, Shaik Mohammed Zakeeruddin, Felix Thomas Eickemeyer, Peng Wang, Ming Ren
Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan