Differential operatorIn mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative.
Inverse problemAn inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because it starts with the effects and then calculates the causes. It is the inverse of a forward problem, which starts with the causes and then calculates the effects.
Mathematical optimizationMathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Kernel (linear algebra)In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically: The kernel of L is a linear subspace of the domain V.
Purely inseparable extensionIn algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. An algebraic extension is a purely inseparable extension if and only if for every , the minimal polynomial of over F is not a separable polynomial.
Convex hullIn geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact.
TensorIn mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product.
Convex functionIn mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain.
Algebraic extensionIn mathematics, an algebraic extension is a field extension L/K such that every element of the larger field L is algebraic over the smaller field K; that is, every element of L is a root of a non-zero polynomial with coefficients in K. A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory.
Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].