Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Convex analysisConvex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory. Convex set A subset of some vector space is if it satisfies any of the following equivalent conditions: If is real and then If is real and with then Convex function Throughout, will be a map valued in the extended real numbers with a domain that is a convex subset of some vector space.
Tensor algebraIn mathematics, the tensor algebra of a vector space V, denoted T(V) or T^•(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of T(V).
Jacobian matrix and determinantIn vector calculus, the Jacobian matrix (dʒəˈkəʊbiən, dʒᵻ-,_jᵻ-) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature.
Wasserstein metricIn mathematics, the Wasserstein distance or Kantorovich–Rubinstein metric is a distance function defined between probability distributions on a given metric space . It is named after Leonid Vaseršteĭn. Intuitively, if each distribution is viewed as a unit amount of earth (soil) piled on , the metric is the minimum "cost" of turning one pile into the other, which is assumed to be the amount of earth that needs to be moved times the mean distance it has to be moved. This problem was first formalised by Gaspard Monge in 1781.
Inverse function theoremIn mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse.
Neighbourhood systemIn topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point in a topological space is the collection of all neighbourhoods of Neighbourhood of a point or set An of a point (or subset) in a topological space is any open subset of that contains A is any subset that contains open neighbourhood of ; explicitly, is a neighbourhood of in if and only if there exists some open subset with . Equivalently, a neighborhood of is any set that contains in its topological interior.
Local propertyIn mathematics, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some sufficiently small or arbitrarily small neighborhoods of points). Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points.