Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.
Algèbre tensorielleEn mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons linéaires de « mots » formés avec des vecteurs d'un espace vectoriel donné. Les seules relations de dépendance linéaire entre ces mots sont induites par les combinaisons linéaires entre les vecteurs. Si l'espace vectoriel sous-jacent est muni d'une base, son algèbre tensorielle s'identifie avec l'algèbre associative unitaire libre engendrée par cette base.
Matrice jacobienneEn analyse vectorielle, la matrice jacobienne est la matrice des dérivées partielles du premier ordre d'une fonction vectorielle en un point donné. Son nom vient du mathématicien Charles Jacobi. Le déterminant de cette matrice, appelé jacobien, joue un rôle important pour l'intégration par changement de variable et dans la résolution de problèmes non linéaires. Soit F une fonction d'un ouvert de R à valeurs dans R. Une telle fonction est définie par ses m fonctions composantes à valeurs réelles : .
Distance de WassersteinEn mathématiques et plus particulièrement en théorie des probabilités et en statistique, la 'distance de Wasserstein (ou distance de Kantorovitch, ou distance de Kantorovitch – Rubinstein') est une distance définie entre des mesures de probabilité sur un espace polonais. La plupart des publications en français adoptent l'orthographe allemande Wasserstein pour ce nom russe d'origine allemande.
Théorème d'inversion localeEn mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.
Neighbourhood systemIn topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point in a topological space is the collection of all neighbourhoods of Neighbourhood of a point or set An of a point (or subset) in a topological space is any open subset of that contains A is any subset that contains open neighbourhood of ; explicitly, is a neighbourhood of in if and only if there exists some open subset with . Equivalently, a neighborhood of is any set that contains in its topological interior.
Propriété localeOn dit d'une certaine propriété mathématique qu'elle est localement vérifiée en un point d'un espace topologique s'il existe un système fondamental de voisinages de ce point sur lequel la propriété est vraie. On dit d'une certaine propriété mathématique qu'elle est localement vérifiée si elle est localement vérifiée en tout point de l'espace topologique considéré. Cette notion se retrouve dans tous les domaines des mathématiques qui utilisent la topologie, en particulier en analyse.