Analytical Methods, Correlative Microscopy and Software Tools for Quantitative Single Molecule Localization Microscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Microscopy is of high interest for biology since it allows imaging features that are too small to
be seen with naked eyes. However, cells are mostly transparent to visible and infrared light
which makes it difficult to see with a traditional microscope. To ...
Super-resolution fluorescence microscopy is widespread, owing to its demonstrated ability to resolve dynamical processes within cells and to identify the structure and position of specific proteins in the interior of protein complexes. Nowadays, subcellula ...
Optical microscopy is an essential tool in biology and medicine. Imaging thin, yet non-flat objects in a single shot (without relying on more sophisticated sectioning setups) remains challenging as the shallow depth of field that comes with high-resolution ...
Overcoming the classical diffraction limit in optical microscopy is known to be achievable by a variety of far-field and near-field microscopy techniques. More recently, so-called micro-object-based optical super-resolution microscopy techniques have emerg ...
This feature issue commemorating 25 years of STED microscopy and 20 years of SIM is intended to highlight the incredible progress and growth in the field of superresolution microscopy since Stefan Hell and Jan Wichmann published the article Breaking the di ...
Mycobacterium tuberculosis, the etiological agent for the tuberculosis disease, is a bacterial pathogen thought to infect about a quarter of the global human population. It is the first cause of death among infectious diseases, and is most prevalent in low ...
Fluorescence microscopy is the method of choice to monitor dynamic processes in living cells due to its non-invasive nature. A variety of different fluorophores and labeling systems are currently used to selectively visualise structures or biomolecules of ...
Fluorescence microscopy methods have been developed to circumvent the diffraction limit by exploiting nonlinearities in the interactions between light and fluorophores. Initially, these methods were up to orders of magnitude slower than standard microscopi ...
Most diffraction-unlimited super-resolution imaging critically depends on the switching of fluorophores between at least two states, often induced using intense laser light and specialized buffers or UV radiation. Recently, so-called self-blinking dyes tha ...
Well-established imaging techniques proved that features below the diffraction limit can be observed optically using so-called super-resolution microscopies, which overcome Abbe's resolution limit. In traditional far-field microscopy, the introduction of f ...