Well surface roughness and fault density effects on the Hall mobility of In[sub x]Ga[sub 1−x]As/In[sub y]Al[sub 1−y]As/InP high electron mobility transistors
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Black phosphorus (BP) stands out among two-dimensional(2D) semiconductorsbecause of its high mobility and thickness dependent direct band gap.However, the quasiparticle band structure of ultrathin BP has remainedinaccessible to experiment thus far. Here we ...
Gallium Nitride (GaN) has enabled groundbreaking developments in the field of optoelectronics and radio frequency communication. More recently, GaN devices for power conversion applications have demonstrated excellent potential. Thanks to Gallium Nitride w ...
Taking into account the impact of self-heating and temperature rise effects, this work presents a physics-based analytical model for HEMTs, operating continuously from room temperature to high temperatures in linear and saturation regimes. Relying on the c ...
Gallium Nitride (GaN) is a wonder material which has widely transformed the world by enabling
energy-efficient white light-emitting diodes. Over the past decade, GaN has also emerged as one
of the most promising materials for developing power devices which ...
Gallium Nitride (GaN) and all III-Nitride compounds have revolutionized the world with the development of the blue light emitting diode (LED). In addition, GaN-based epi-structures, such as AlGaN/GaN, enable the fabrication of high electron mobility transi ...
Gallium Nitride (GaN) is one of the most promising materials for high frequency power switching due to its exceptional properties such as large saturation velocity, high carrier mobility, and high breakdown field strength. The high switching frequency of G ...
The high work-related mobilities concern a significant proportion of the active population and condition novel lifestyles. This chapter describes the practices and discourses of the people concerned by these high mobilities, challenge a number of preconcep ...
The outstanding properties of Gallium Nitride (GaN) have enabled considerable improvements in the performance of power devices compared to traditional silicon technology, resulting in more efficient and highly compact power converters. GaN power technology ...
Over the last decade, gallium nitride (GaN) has emerged as an excellent material for the fabrication of power devices. Among the semiconductors for which power devices are already available in the market, GaN has the widest energy gap, the largest critical ...
III-N family of materials has offered multiple groundbreaking technologies in the field of optoelectronics and high-power radio-frequency (RF) devices. Blue light-emitting diodes (LEDs) have revolutionized low-energy lighting. Gallium nitride (GaN) RF mark ...