Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
In this paper, we present different solutions for improving spline-based snakes. First, we demonstrate their minimum curvature interpolation property, and use it as an argument to get rid of the explicit smoothness constraint. We also propose a new external energy obtained by integrating a non-linearly pre-processed image in the closed region bounded by the curve. We show that this energy, besides being efficiently computable, is sufficiently general to include the widely used gradient-based schemes, Bayesian schemes, their combinations and discriminant-based approaches. We also introduce two initialization modes and the appropriate constraint energies. We use these ideas to develop a general snake algorithm to track boundaries of closed objects, with a user-friendly interface.