**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Development of a finite volume particle method for 3-D fluid flow simulations

François Avellan, Ebrahim Jahanbakhsh, Audrey Paulette Solange Maertens, Christian Vessaz

2016

Journal paper

2016

Journal paper

Abstract

The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. FVPM benefits from particle interaction vectors to weight conservative fluxes exchanged between particles. These vectors are equivalent to the intercell area vectors in mesh-based finite volume methods. To compute the interaction vectors, either numerical or exact integration has been used. Numerical integration, based on quadrature rules, is approximate and costly, whereas the exact method, employing a top-hat kernel, is precise and fast. To date, quadrature integration has not been used in 3-D due to its excessive cost and the exact method has been developed only for 2-D computations. In this study, we develop a new 3-D FVPM formulation which features a rectangular top-hat kernel to compute interaction vectors exactly and efficiently. We also introduce a new boundary condition enforcement technique based on a single layer of boundary particles. In this technique, no-slip wall boundary conditions with complex geometries are precisely enforced by overlaying a layer of particles on wall surfaces. Employing AUSM+ for inviscid fluxes, weakly-compressible fluid flow is studied with the proposed method. To achieve more accurate results, the solution can be refined near the wall boundary by splitting the fluid particles. This formulation is validated for lid-driven cavity flow, a moving square and jet impingement test cases.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (26)

Related concepts (35)

Related publications (63)

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Numerical integration

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals.

Smoothed-particle hydrodynamics

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method (where the co-ordinates move with the fluid), and the resolution of the method can easily be adjusted with respect to variables such as density.

Meshfree methods

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.

Annalisa Buffa, Pablo Antolin Sanchez, Xiaodong Wei

We present a novel isogeometric method, namely the Immersed Boundary-Conformal Method (IBCM), that features a layer of discretization conformal to the boundary while employing a simple background mesh for the remaining domain. In this manner, we leverage t ...

To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...

2023Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...